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Abstract— We propose a simple and lightweight framework
for deep reinforcement learning that uses synchronous gradient
descent for optimization of deep neural network controllers with
experience replay. We incorporate synchronous, deterministic
variant of reinforcement learning algorithms, named A2C, with
experience replay and show that parallel actor-learners have
a stabilizing effect on training. Experiment are conducted by
solving games in OpenAI gym with the proposed algorithm.
Moreover, different experience replay buffer size and sampling
techniques are compared. Our result outperforms the baseline
A2C without experience replay. Our code1 are released for
future research.

I. INTRODUCTION

The goal of reinforcement learning (RL) is to learn the a
policy by using an agent to interact with the environment. A
better policy indicates higher reward will be accumulated [1].
Recently, reinforcement learning has been shown to perform
extraordinarily well on a wide range of Atari games[2] and
physical simulations[3], [4].

In the literature of reinforcement learning, several methods
are proposed to improve the policy and those methods can
be coarsely categorized into 2 categories. The first category
finds the optimal policy indirectly through the surrogate op-
timal value function, such as Q-learning[5] and SARSA[6].
The other category, named policy iteration, optimizes the
policy directly without any objective value function. Actor-
critic[7] method is a well-known method that generalizes
policy iteration. It iterates between the policy evaluation
process and the policy improvement process. Two modules,
an actor module and a critic module, are interacting with
each other. The actor module aims at improving the current
policy, while the critic module evaluates the current policy.

A recent paper advantage actor-critic method [8] discussed
an alternative way to train the system by using synchronous
gradient descent for optimization of deep neural network
controllers. The proposed methods can improve stability of
both the on-policy and off-policy algorithms with parallel
actor learners during the training process.

In addition, inspired by paper Sample Efficient Actor-
Critic with Experience Replay (ACER) [9], we would like
to investigate the possibility to incorporate experience re-
play into A2C algorithm. Moreover, [8] also mentions that
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adding experience replay would possibility improve the data
efficiency by reusing old data.

As a result, in this final project, the advantage actor-
critic(A2C) method is implemented as our baseline. Several
Atari games and traditional control problems were experi-
mented using the algorithm. We extend A2C algorithm with
experience replay technique and hopefully, it will boost and
stabilize the performance of the network.

II. BACKGROUND
Reinforcement learning (RL) has performed effectively

and efficiently on different tasks, including Atari games and



traditional control problems. Although RL algorithms has
good performance, its training procedure is unstable. As a
result, experience-based RL methods are proposed to solve
the unstable training procedure.

Experience replay is actually a useful tool for improving
sample efficiency and, as we will see in our experiments,
state-of-the-art deep Q-learning methods [10] [11] have been
up to the efficient techniques on Atari by boosting reward.

The A2C method was inspired by the Asynchronous Ad-
vantage Actor Critic method (A3C). The algorithm combines
a few key ideas as following. First, an updating scheme
that operates on fixed-length segments of experience (say, 20
timesteps) and uses these segments to compute estimators of
the returns and advantage function. Second, architectures that
share layers between the policy and value function. Third,
the networks are updated asynchronously.

Advantage actor-critic (A2C) method [8] proposed to train
the network in synchronous way and apply to different RL
learning algorithms, including SARSA, Q-learning and actor
critic. The motivation of proposed method is to solve the
instability when training the network in the same thread,
due to the high correlation between the training data. This
parallel training scheme also decorrelates agents data leading
to a more stable outcome.

Many of these methods are restricted to continuous do-
mains or to very specific tasks such as playing Go. The
existing variants applicable to both continuous and discrete
domains, such as the on-policy asynchronous advantage actor
critic (A3C) of [12], are sample inefficient.

ACER [9] capitalizes on recent advances in deep neural
networks, variance reduction techniques, the off-policy re-
trace algorithm [13] and parallel training of RL agent s[12]

Although adding experience replay techniques can allevi-
ate the problem, it constraints the training procedure to be
off-policy and the replay buffer will increase significantly as
more experience is needed, which results in high memory
usage.

III. METHOD

A. Project Idea

The baseline implementation is to replicate the A2C algo-
rithm. Since the A2C only depends on the on-policy update,
the algorithm discards all the trajectories after updating
networks. To further extend the stability and capability of
the network, we implement the algorithm Sample Efficient
Actor-Critic with Experience Replay [9] by adding the
experience replay to the original A2C algorithm. We wonder
that the old trajectories may be still useful as for updating
the networks. The experiment results are shown in Section
IV.

B. Proposed Architecture

Advantage actor-critic (A2C) method [8] proposes to train
the network in synchronous way and apply to different RL
learning algorithms, including SARSA, Q-learning and actor
critic. The motivation of proposed method is to solve the
instability when training the network in the same thread, due

to the high correlation between the training data. Although
adding experience replay techniques can alleviate the prob-
lem, it constraints the training procedure to be off-policy
and the replay buffer will increase significantly as more
experience is needed, which results in high occupation of
computing and memory resources.

The proposed method solves the problem by introducing
multiple agent to interact with the environment in parallel at
different threads. Every agent is randomly initialized, so the
data correlation is reduced between experience from different
agents. The method [8] allows on-policy learning without
occupying great amount of computing resources and stability
during training procedure is improved.

Our proposed architecture is similar to [8] as described in
Algorithm 1. For each thread, a replay buffer is created to
store the past experience of the agent. Again, the data corre-
lation is minimized between agents, but the past experience
of same agent are utilized. Each tuple in the replay buffer
is a single trajectory that the agent has explored, while each
trajectory are composed of several steps before reaching the
terminated state. The reward for each step and the return
of the entire trajectory are stored with the evaluation metric
described in Section III-C

The proposed experience replay sampling procedure is
similar to [9]. The latest trajectory is always sampled to
ensure that the network update always take the latest tra-
jectory into consideration. If the minibatch only contains 1
trajectory, which is the latest one, the proposed architecture
then becomes the typical A2C algorithm, which is an on-
policy algorithm. With appropriate number of past experience
added, our proposed algorithm then become an off-policy
algorithm without ignoring the latest trajectory.

Since we need to handle different environments in Open
AI gym, different games come with different reward function
which may lead to the negative reward. We applied the
softmax to the reward function when we need to prioritize
the replay buffer.

C. Evaluation Metric

Assume the network is trained with T threads. All the
returns for each thread are recorded during the training
procedure. When the training is done, the returns of each
trajectory for each thread is sorted according to the time it
is generated. The typical running average methods is applied
on the sorted reward. The results are shown in Table II. The
performance of our result is comparable to the state-of-the-
art result.

IV. RESULTS

A. Baseline Architecture

We implement the A2C algorithm using OpenAI re-
source2. Referring to the OpenAI docker file, we have
regenerated the docker file3 for our experiments. Three
Atari games, Pong, Breakout and BeamRider, and 3 control

2https://blog.openai.com/baselines-acktr-a2c/
3https://hub.docker.com/r/fraserlai/276_project/
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Algorithm 1 Advantage actor-critic with experience replay
//Assume global shared parameter vectors θ and θv and global
shared counter T = 0
// Assume thread-specific parameter vectors θ′ and θv

Initialize thread step counter t← 1
for T < Tmax do

Reset gradient: dθ ← 0 and dθv ← 0
Synchronize thread specific parameters θ′ = θ and θ′v = θv
tstart = t
Get state st
while not terminate or t− tstart < tmax do

Perform at according to policy π(at|st; θ′)
Receive reward rt and new state st+1

t← t+ 1,
T ← T + 1

end while
Add the trajectory into replay buffer

X = 0

{
0, for terminalst
V (st, θ

′
v), for non-terminalst

for i ∈ t− 1, . . . , tstart do
R← ri + γR
Accumulate gradients wrt θ′ : dθ ← dθ +
∆θ′ logπ(ai|si; θ′)(R− V (si; θ

′
v))

Accumulate gradients wrt θ′v : dθv ← dθv + ∂(R −
V (si; θ

′
v))2/∂θ′v

end for
Replay the mini-batch and update the network

end for

simulations, cart pole, mountain car and invert pendulum are
experimented. The reward plot are shown in Table I. We have
successfully run the algorithm on different environments and
the videos are provided in the supplementary material.

B. Proposed Architecture

Different from the game experimented in the baseline
architecture, we explore 3 extra environments to test the
proposed architecture, including humanoid, half-cheetah and
hopper. The hyperparameters setting are identical to the
baseline architecture.

The proposed architecture are experimented with different
replay buffer settings, including 3 different factors. While a
single factor is altered, the others are fixed in the experiment.

1) Buffer size This is the maximum number of past
trajectories stored in the replay buffer. Note that the
latest trajectory is always sampled.

2) Sample size This is the number of past trajectories
sampled from the replay buffer. Note that the latest
trajectory is always sampled.

3) Prioritized Assume that the importance of a certain
trajectory is determined by its return. With each trajec-
tory weighted by its return, the trajectory with higher
return has higher probability to be sampled. Note
that the weighted of probability is measure by using
softmax function.

a) Experience Replay Buffer Size Comparison: Dif-
ferent replay buffer sizes are experimented in this experi-
ment, as illustrated in the first column of Table II. With
appropriate replay buffer size, the performance with replay

TABLE II
REWARD PLOTS FOR DIFFERENT ENVIRONMENTS UNDER DIFFERENT

EXPERIENCE REPLAY SETTINGS. (A) DIFFERENT BUFFER SIZE (SAMPLE
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SORT THE REPLAY BUFFER BY EACH TRAJECTORY RETURN
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buffer outperforms the baseline network. It is observed that
the received reward is sensitive to the replay buffer size. The
result shows that large buffer size will harm the performance
significantly, because more unrelated past experiences are
likely to be sampled.

For the traditional control and mountain car environment,
the appropriate buffer size are around five to twenty. With the
replay buffer, these three problem can converge more stable
than baseline (A2C).

Moreover, we also observe that the appropriate buffer
size of humanoid, hopper and half-cheetah environments are
smaller than the other three environments. This shows that
past experiences are not helpful in those tasks.

b) Experience Replay Sample Size Comparison:
This experiment shows the relationship between reward and
sample size under fixed buffer size, as shown in the second
column of FigureII. As the sample size increases, more past



experience are sampled. Since some of the old trajectories
deviate too far from the trajectory generated from current
policy, sampling too many past experience will degrade the
performance of the network.

For MountainCar and Inverted Pendulum problem, adding
small replay buffer can make the converge more stable after
updating certain iterations. The reward grows faster than the
baseline. For the CarPole problem, any sample size of replay
buffer makes the result converge much faster and more stable
than the baseline model.

Again, for humanoid, hopper and half-cheetah environ-
ments, the reward are more sensitive to the number of sample
size. For hopper environment, with small experience, the
reward can surpass the baseline model and keep growing.
However, the reward of half-cheetah environment is more
unstable as we adding little number of experience replay.

c) Prioritized vs Non-prioritized Experience Replay:
This experiment investigates the effect of prioritizing the
importance of different trajectories, as demonstrated in the
third column of FigureII. Interestingly, we found the prior-
itized sampling improves the performance of the agent in
mountain car, cart pole and invert pendulum environments,
but deteriorates the performance on the rest.

V. DISCUSSIONS AND CONCLUSIONS
In this project, we reproduce the A2C result using the

OpenAI resources as our baseline. 6 different environments
are tested, which include Atari games, control problems and
physical simulation. Moreover, A2C algorithm is extended
by adding the replay buffer. We borrow the idea from [9] and
combine the concept with A2C algorithm. Experiments show
that A2C with experience replay, can make the convergence
speed much faster and more stable than the baseline model
(A2C). With the advantage of A2C and experience replay, we
can boost the training speed in many environment in OpenAI
gym. Moreover, we compare the effect of different buffer
size and sample size settings. Many testing environment are
sensitive to the size of replay buffer and both large buffer
size and sample size hurt the result of the experiment. With
adequate experience replay, our algorithm can surpass the
performance from the baseline. We also demonstrate two new
environment, half-cheetah and hopper, which have not tested
in both [12] and [9] before. Our code and docker are released
future research.

VI. FUTURE WORK
In [14], they show that applying Kronecker-factored ap-

proximate curvature with trust region on on-policy actor-
critic methods can achieve higher rewards and improve the
sample efficiency. Therefore, we would like to apply trust
region on off-policy methods like our framework and to
see whether it will improve the performance of off-policy
methods or not.

ACKNOWLEDGMENT
We thank the assist from the instructors in ECE 276C for

setting up the GPU cluster and providing the suggestion for
the final project.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available:
http://dx.doi.org/10.1038/nature14236

[3] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015.
[Online]. Available: http://arxiv.org/abs/1502.05477

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

[5] C. J. C. H. Watkins and P. Dayan, “Q-learning,” in Machine Learning,
1992, pp. 279–292.

[6] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[7] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in Neural Information Processing Systems 12, S. A. Solla, T. K. Leen,
and K. Müller, Eds. MIT Press, 2000, pp. 1008–1014. [Online].
Available: http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[9] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience
replay,” CoRR, vol. abs/1611.01224, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01224

[10] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

[11] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning, 2016, pp. 1928–1937.

[13] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, “Safe
and efficient off-policy reinforcement learning,” in Advances in Neural
Information Processing Systems, 2016, pp. 1054–1062.

[14] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable
trust-region method for deep reinforcement learning using kronecker-
factored approximation,” in Advances in neural information processing
systems, 2017, pp. 5285–5294.


